# Measuring the Performance of UV LED Light Sources

Sink or Swim June 5, 2018



Jim Raymont EIT Instrument Markets



## **Measurement Expectations**

### **Temperature**

- Industrial thermometry: 1% accuracy
- Laboratory thermometry: 0.01% accuracy
- High-accuracy metrology: 0.0001% accuracy

### **Weights**

Calibration of reference weights (1 mg to 10 kg): Accuracy up to 1 part in 10<sup>6</sup>

From Measurement Standards Lab of New Zealand

#### **Industrial UV Measurement**

- Easy to use and understand
- Production Environment/Production Staff
- Goal: Improve UV LED Measurement

## Challenges In Measuring UV

### **Optics**

- Different Bands/Manufacturers
- Define response by 10%
   Power Point or 50% Power
   Point (FWHM)

### **Calibration Sources/Points**

 One source type does not always fit

### **Electronics**

- Dynamic range
- Sampling rates
- RMS vs. Instantaneous Watts
- Threshold Differences

### **Data Collection Techniques**

User Errors

How do we improve measurement performance and maintain ease of use in a production environment?

## **Broadband Spectral Output**

### Hg spectra modified with added materials



## **EIT Broadband Response Curves**

#### UVA, UVB, UVC, UVV Transmission scan



| Band Name | Wavelength Range |  |
|-----------|------------------|--|
| UVA       | 315-400nm        |  |
| UVB       | 280-315nm        |  |

| Band Name | Wavelength Range |  |
|-----------|------------------|--|
| UVC       | 240-280nm        |  |
| UVV       | 400-450nm        |  |

### Measurement of 395 nm LED

### Using UVA to measure a 385 nm or 395 nm LED



### **UV LEDs**

### Wide variety of UV LED sources

- Multiple suppliers with wide level of expertise, support, finances
- Match source to your application & process
- Economics of source selected (ROI)





## Why Measure LEDs

| Date        | Watts                 | Joules                 |
|-------------|-----------------------|------------------------|
| August '17  | 7.7 W/cm <sup>2</sup> | 420 mJ/cm <sup>2</sup> |
| January '18 | 4.6 W/cm <sup>2</sup> | 250 mJ/cm <sup>2</sup> |

- First Assumption: Instrument had gone bad
- Instrument back for evaluation
- Reading very close (<2%) to the EIT master unit

| Calibration: Less than a 2% adjustment |                       |                        |  |  |
|----------------------------------------|-----------------------|------------------------|--|--|
| Feb '18                                | 4.6 W/cm <sup>2</sup> | 250 mJ/cm <sup>2</sup> |  |  |

- Very smart group of researchers
- Reviewed process conditions/process controls
- Reviewed data collection techniques/instrument use

### Ink was coated on the LED window

# Why Measure UV LEDs?











**UV LED** 

**Coatings** 

Substrate

- LED: Solid state device
- Thousands of Hours without service

#### **Process Variables**

- Line Speed
- LED Power
- LED Height
- Cleanliness
- Off Gassing
- Quartz Window
- Failure of LED
- Wrong Band LED

#### **Failure modes**

- Heat/Cooling
- Infant mortality
- Die (Chip) Failure
- Power Supply
- Chiller
- •

## **Initial Approach to LED Measurement**

- Initial EIT Approach for LEDs was UVA2 Band
- Response +/- 380-410 nm
- Filter Only Response
- Calibration Source
  - Uniformity of LED
     Sources for calibration
  - Irradiance Levels
- Start from the beginning and take a new approach





## Step One: Evaluate LED Output



395 nm LED array output measured on a spectral radiometer at EIT

## Define the right band?

Theoretical Band

Account for variation in the LED CWL



L395 LED Output Spectra Showing <u>+</u> 5nm Spread of Cp Along with Required Filter Response to Obtain 2% Measurement

## Step Two: New Approach to Optics Design

### **Challenges**

- Optics: Combination of multiple optical components
  - Outer filter
  - Diffuser
  - o Intensity reduction
  - Optical filter
  - Detector
- Each component has its own response

## Generic Optics Design



# Step Two: Address and Improve Optics Design

**Optical Filter(s)** 

UVA, UVB, UVC, UVV Transmission scan



The traditional approach has been to define the band response based ONLY on the filter response

## **EIT Optics Design**





## **EIT Optics Design**





- Maintain Cosine Response
- Avoid changes in low angle Energy

## **EIT Optics Design**





## **Total Measured Optic Response**



- EIT Patented design and approach
- Address Issues <u>ALL</u> Optical Components in the Optic Stack included in the measured instrument response
- Not a theoretical response, actual measured instrument response

### Why not have a wider width response?

Balance the Flatness



## L395 Instrument Response

## **Total Measured Optical Response (370-422 nm)**



## L395 Instrument Response

### **Total Measured Optics Response**



## **Step 3: Improve the Calibration Process**

- Industrial 395 nm LED sources pushing 50W/cm<sup>2</sup>
- Typical irradiance levels, sources and standards that NIST has worked with are much lower (mW/cm²-µW/cm²)
- Reduce variation and errors introduced in transfer process
  - Fixtures
- Direct evaluation of EIT master unit by NIST from 220 nm past visible region
- Uniformity of UV LED source used with working standard and unit under test different than LED uniformity needed for curing
- LEDs are cooler but not heat free





## **Step 3: Improve the Calibration Process**



Fixture with optic orientation & repeatability









Stability of units

## **Step 3: Improve the Calibration Process**



How do we make sure the fixture is placed in the same location each time?





## Step 4: Support Different LED Wavelengths



- Working to develop a fixture to support multiple wavelengths
- Adjustable power levels and platform height
- Support multiple brands of LED sources
- Keep instruments properly aligned for repeatability

# Why use a Total Measured Optics Response?

### **Instrument "Wish" List**

- Easy to Use
- Portable and Flexible
- High Dynamic Range
- Response Allows for Source CWL (+/- 5 nm)
- Use in R&D and Production
- Cosine Response
- Affordable
- Repeatable
  - Unit-to-Unit Matching
  - Source-to-Source
  - o Run-to-Run
- Accurate to Standard

### **LEDCure L395 Feedback**



- A 395nm UV LED source was calibrated to 16W/cm<sup>2</sup> using the EIT L395.
- The UV LED source was then measured with another NIST traceable radiometer.
- The two radiometers matched to within 4% at different irradiance levels.

**Data Courtesy of Phoseon Technology** 

### **LEDCure L395 Feedback**





- The EIT measurement differed from the calculated value by less than 1%.
- The other NIST traceable radiometer differed from the calculated value by more than 13%.

**Data Courtesy of Phoseon Technology** 

### **LEDCure L395 Feedback**



- Measurements at different irradiance settings were made with the EIT L395 radiometer, and compared to the expected values.
- The L395's linearity across a 3:1 dynamic range is excellent.

**Data Courtesy of Phoseon Technology** 

## **LEDCure L395 Performance**

### **LEDCure vs. National Standard**

| Working<br>Distance<br>(mm) | Primary Standard: Integrating Sphere (W/cm²) | LEDCure<br>L395<br>(W/cm²) | Difference |
|-----------------------------|----------------------------------------------|----------------------------|------------|
| 5                           | 9.01                                         | 9.23                       | 2.4%       |
| 10                          | 7.74                                         | 7.74                       | 0.0 %      |
| 15                          | 6.66                                         | 6.63                       | - 0.5%     |
| 20                          | 5.74                                         | 5.83                       | 1.6%       |
| 25                          | 5.04                                         | 5.08                       | 0.8%       |

**Data Courtesy Lumen Dynamics/Excelitas** 

Additional testing has been completed by others

### **LEDCure L395 Performance**













### **LEDCure L395 Features**



### Easy to Use

- Familiar button, menu & display
- Graph & Reference Modes
- One button operation on production floor
- Offset optics
- Two User Changeable Batteries (AAA), last up to 30 hours





### SUMMARY

- The variation in commercial UV LED sources prompted a new approach
- Total Measured Optic Response considers the effects of all optical components in the instrument
- The L-band approach provides exceptional accuracy and repeatability
- L395 and L365 LEDCure radiometers are available
- L385 & L405 LEDCure radiometers Sensors will be available very soon

## **Thank You**

**Jim Raymont** 

jraymont@eit.com

309 Kelly's Ford Plaza SE Leesburg, VA 20175 USA

Phone: 703-478-0700

New EIT Facility for Manufacturing,
Sales and Service