UV LED Measurement Status Update

Jim Raymont

September 19, 2016

Presentation Overview

- UV Measurement
 Fundamentals & Variables
- UV LEDs
- Measurement of UV LEDs

Save Time & Money

Copy of Presentation email: uv@eit.com

Broadband Spectral Output Arc, Microwave, Spot Sources

Hg spectra modified with added materials

Instrument Responses

The traditional approach has been to define the band response based <u>only</u> on the filter response

Challenges Measuring Broadband UV Sources

Work in past to improve & understand UV measurement

- 3M, Heraeus, International Light, EIT
- RadTech Measurement CD
- Educate & Communicate

Why are there differences between instruments?

Optics

- Different Bands/Manufacturers
- Define response by 10% Power Point or 50% Power Point (FWHM)

Electronics

- Dynamic range
- Sampling rates
- RMS vs Instantaneous Watts
- Threshold Differences

Calibration Sources/Points

 One source type does not always fit

Data Collection Techniques

User Errors

User Expectations

• Fraction of a percent?

Wide variety of UV LED sources

- Multiple suppliers with wide level of expertise, support, finances
 - More than someone with SMT equipment?
- Experience in industrial UV, visible lighting, semiconductor industry?
- Ties to formulators?
- Match source to your application & process
- Economics of source selected (ROI)

Images courtesy Baldwin, Dymax, Integration Technology, Excelitas & Phoseon Technology

UV LED Adoption

The UV LED train has left the station

(2.5%) are risk takers who have the resources and desire to try new things, even if they fail (13.5%) are selective about which technologies they start using. They are to check in with" for new information and reduce others'

uncertainty about a new technology by

adopting it.

(34%) take their time before adopting a new idea. They are willing to embrace a new technology as long as they understand how it fits with their lives. (34%) adopt in reaction to peer pressure, emerging norms, or economic necessity. Most of the uncertainty around an idea must be resolved before they adopt. (16%) are traditional and make decisions based on past experience. They are often economically unable to take risks on new ideas.

Bryce Ryan & Neal Gross (1943)

UV LED Adoption

Graphic Arts / Printing

- Digital (standard format, wide format, direct to substrate)
- Screen (simple carousel machines, complex industrial)
- Flexographic (narrow, wide)
- Offset
- Adhesives
 - Spot (off the shelf)
 - Industrial (large/wide or custom formulation)
- Coatings
 - Wood
 - Fiber Optics
 - Protective Hard Coats
 - Other

Courtesy Paul Mills: UV LED Tipping Point

UV LED Power Output vs. Wavelength

UV LEDs: Measurement

What do you want to measure?

- What do you want to measure?
 - Individual LED
 - Array
 - Production system
- Where do you measure?
- What values do you want?
- Industrial UV: W/cm² & J/Cm²
- Visible LEDs: Flux?/Color?

Measurement of 395 nm LED

Wavelength (nm)

Using UVA to measure a 385 nm or 395 nm LED

NIST comparison of UV LED sources

- Study completed by Robert F. Berg, NIST
- Looked at three LED units with two different radiometers
- Right Upper: Detector C exposure vs. detector A exposure
- Right Lower: The ratio of the two detectors' exposures vs. the exposure of detector A
- No surprise there were differences

UV LED Emission Spectra

395 nm LED array output measured on a spectral radiometer Courtesy EIT

UV L395 nm Band

- "L" Band
- "Wide" (+/- 100 nm) vs. "Narrow" (+/- 50 nm) Approach
- Advantages & Disadvantages to each approach
- Goal: Flat
 Response

L395 LED Output Spectra Showing <u>+</u> 5nm Spread of Cp Along with Required Filter Response to Obtain 2% Measurement

Total Instrument Response

- Control of overall optics to flatten OVERALL response of instrument
- All Optical Components
 not just the filter

Instrument Response

Total Measured Optics Response

- Spectral response looks very good based on measurements of 385nm, 395nm and 405nm LEDs
- A 365nm lamp showed very little response with the EIT meter, indicating the spectral response has a steep skirt
- Very consistent peak irradiance and energy density measurements at various scan speeds

□ Scan speeds varied from 1.2 to 6 meters/min

□ Repeated measurements showed very little variation

 Good correlation to a NIST traceable meter from another manufacturer

Instrument Performance

LEDCure™ Profiling Radiometer

- Stability between two different L395 instruments on 16 runs
- Variation: 0.995 to 1.0025

Instrument Performance

LEDCure[™] Profiling Radiometer

- Stability between two different L395 instruments on 16 runs
- Ratio

EIT LED-R™ Series

J/CM2

3,231

L395

W/CM2

RUN

LEDCure[™] Radiometer

- 40 Watt Dynamic Range
- Display Plus Profiler or Non-Profiler Option
- L395 Total Optics Response
- Additional L-Band Options

Calibration Challenges

- Industrial LED sources have exceeded 50W/cm²
- Typical irradiance levels, sources and standards that NIST has worked with are much lower (mW/cm²-µW/cm²)
- Reduce variation and errors introduced in transfer process
 - Fixtures
 - Direct evaluation of EIT master unit by NIST from 220 nm past visible region
- Uniformity of UV LED source used with working standard and unit under test

Council Optical Radiation Measurement

- Worldwide, approximately 20 members
 - USA, Korea, Japan, China, UK, Germany, Denmark, South Africa
- Diverse Well Rounded Membership
 - National Standards Organizations (NIST)
 - Equipment Suppliers (Heraeus, Efsen Engineering)
 - Instrument Suppliers (EIT, Gigahetz-Optik, International Light Technologies)
 - Academic (University of Colorado, Boulder)
 - End Users (3M)
 - Trade Organizations (RadTech, IUVA)

Resources

UV LED Curing Community

- Thousand's of visitors per month
- Hub for information about UV LED technology
- Free to join

www.uvledcommunity.org

www.radtech.org

INSTRUMENT MARKETS

Jim Raymont Phone: 703-478-0700 eit.com

Copy of Presentation email: uv@eit.com